What Motivated Them To Become Physicists?

why do people become scientists?

While several physicists like James Clerk Maxwell, John von Neumann and Lev Landau were child prodigies, most of the scientific greats developed an interest in science thanks to the environment they were brought up in.

study conducted by Pew Research found that 27% scientists were motivated by their school teachers, 17% were inspired by childhood trips to science fairs and 12% became scientists thanks to family encouragement.

In this post, let us learn what motivated Geniuses like Einstein, Tesla, Feynman, Hawking and others to become scientists.

Richard Feynman

Feynman's father, Melville was an immigrant from Minsk, who although a uniform salesman by profession, had always wanted to become a scientist.

In one interview, Feynman recalled: When I was a child, my father would often let me sit on his lap and read to me from Encyclopedia Britannica.

Melville also encouraged his daughter Joan, nine years younger than Richard, to take up an interest in astronomy. She became a distinguished astrophysicist later on.

Albert Einstein

On Einstein's fifth birthday, his father gifted him a compass which left a deep and lasting impression upon the five year old. He noticed that the needle always pointed in the same direction no matter which way he turned the compass.

why did einstein become a scientist?

Einstein wrote years later: "It made me wonder why this needle behaved in such a determined way. Something deeply hidden had to be behind things." Thus, the compass was his introduction to scientific enquiry.

Stephen Hawking

Hawking was born in a family of intellectuals – Both his parents attended the University of Oxford, where his father studied medicine and his mother read philosophy.

He was enrolled at St. Albans school where he was nicknamed Einstein, despite his grades being below average. But of course, there was a reason why his friends called him that...

Hawking used to build model boats and aeroplanes at his home. In 1958, with help from his maths teacher, Dikran Tahta, Hawking and friends built a computer from clock parts, telephone switchboard and other recycled parts.

Carl Sagan

In 1993, Carl wrote: My parents knew almost nothing about science. But in introducing me to skepticism and to wonder, they taught me the two uneasily cohabiting modes of thought that are central to the scientific method.

His love for science was aroused at only 4 years old when his parents took him to the 1939 New York World's Fair where he witnessed the America of tomorrow – spiraling buildings, flying cars and smartphones.

Nikola Tesla

Tesla's mother had a talent for making mechanical appliances at home. She could also recite Serbian epic poems by heart. Nikola thus credited his eidetic memory and creative abilities to his mother's genes and influence.

He attended junior high school in Karlovac, central Croatia where he became interested in demonstrations of electricity by his physics professor. Tesla later wrote that these demonstrations made him want to know more of this wonderful force.

Jocelyn Bell Burnell

She is an astrophysicist who found the first radio pulsar in 1967. Her discovery was recognized by the Nobel Committee with a physics Prize, but despite being the one to identify the pulsar, she wasn't among the recipients.

why do people become scientists?

Young Jocelyn discovered her father's books on astronomy and developed an early interest. However, at school, the girls' curriculum only included cooking and stitching classes, rather than science.

Her parents protested against the school policy, but to no avail. So they sent her to another school where she was permitted to study science. Jocelyn was impressed by her physics teacher, Mr. Tillott. She recalled: He was a really good teacher and showed me, actually, how easy physics was.

Marie Curie

Her father, WÅ‚adysÅ‚aw SkÅ‚odowski was a mathematics and physics teacher. After Russian authorities banned laboratory instruction from Polish schools, SkÅ‚odowski brought much of the lab equipment home and instructed Maria in its use, at a young age.

Ed Witten

Mathematician and physicist Edward Witten, winner of the Fields Medal, grew up hearing about physics from his father, Louis Witten, who himself was a gravitational physicist. "I would talk to Ed about science the way I would talk with adults." Louis told The Guardian.

Summing up:

It can be concluded that parents and teachers who nurture the curiosity of children often help them towards a career in science. Whether it be book reading, gifts like model train, compass or general encouragement; early guidance is always ideal in making of a great scientist.

8 times when Nikola Tesla was wrong about physics

8 times when engineer Nikola Tesla was wrong

Nikola Tesla was a great Serbian-American engineer who played the major role in perfecting and promoting alternate current. He was also a visionary who predicted smartphones, renewable energy and creation of artificial Suns, much before time permitted.

However, it is surprising that Tesla sometimes took anti-science as well as anti-mathematics positions. Several of his views about the world were particularly pseudoscientific. So in this post, let us look at 8 instances when even the Genius Nikola Tesla was wrong.


On electrons

Tesla did not agree with the theory of atoms being composed of smaller subatomic particles. He thought that there was no such thing as an electron creating an electric charge and that it had nothing to do with electricity.

However, not only did the electron get discovered but also its properties and effects were measured by physicist J.J. Thomson at the start of the twentieth century. Without electron, technologies like the television couldn't exist.


On relativity

According to Nikola Tesla, Einstein's 1915 theory of general relativity was wrong. He commented in 1932: "I hold that space cannot be curved, for the simple reason that it can have no properties. It might as well be said that God has properties. He has not."

8 times when engineer Nikola Tesla was wrong

In 1935, Tesla told The New York times: "Einstein's relativity work is a magnificent mathematical garb which fascinates, dazzles and makes people blind to the underlying errors. The theory is like a beggar clothed in purple whom ignorant people take for a king."

In 2004, the gravity probe-b satellite was launched to measure the curvature due to Earth. Its data was analyzed by the Stanford University and it indeed confirmed Einstein's theory to a high degree of accuracy in 2011.

Furthermore, without relativity, the GPS would fail in its navigational functions and Google maps couldn't work to pinpoint precision.


On mathematics

Nikola Tesla said in 1934: "Today's scientists have substituted mathematics for experiments, and they wander off through equation after equation and eventually build a structure which has no relation to reality."

That may be true, although mathematics and experiments are both fundamental to scientific progress. There cannot be one without the other, especially in the field of physics.

At the same time in Europe, Dirac was trying to find an equation to unify quantum mechanics and special relativity. He predicted the existence of antimatter in doing so, which was discovered in 1932.

Even 16th century Galileo Galilei had a high regard for mathematics, when he said: Philosophy is written in mathematical language; without it one wanders in vain through a dark labyrinth.


On atomic energy

Tesla told The New York Times in 1931: "The idea of atomic energy is illusionary. I have preached against it for twenty-five years but there are still some who believe it to be realizable."

Because, as mentioned before, he did not trust the theory of subatomic particles. So according to Tesla, atoms were immutable – meaning that they could not be split or changed in any way.

Two years after Tesla's death in 1943, not only did the humankind split the atom, they also used it to end the World War II. Although it began a nuclear arms race and a call for disarmament – well that is another story in itself.

Today, atomic energy is a source of nuclear power – as predicted by physicist Lise Meitner – which is in turn used to generate heat and electricity. Moreover, scientists are also working on a large-scale fusion project called ITER for future electricity generation.


On EM waves

German physicist Henrich Hertz demonstrated the accuracy of Maxwell's equations when he successfully generated electromagnetic waves in laboratory.

Because Tesla did not have the mathematical advantage, he relied completely on experiments and his own experiments led him to erroneously believe that Hertz and Maxwell were wrong.

In one 1891 lecture, Tesla expressed openly his disagreements with Hertz – which is anyway healthy for the sake of scientific progress.

But over the next few years, several groundbreaking evidences were collected in the favor of Maxwellian electromagnetism.

In 1898, Tesla himself developed a radio based remote-controlled boat and yet till 1919 he did not believe in the existence of EM waves and in the theories developed by Maxwell and Hertz.


On wireless electricity

Tesla was a great visionary but his vision was not always practical. After perfecting alternate current technologies, Tesla wanted to make a new revolutionary change - render wires useless!

At first, Tesla decided to transmit electricity through air but rejected the idea later on. In 1902, Tesla completed the Wardenclyffe Tower to tranfer electricity via ground.

However, engineers pointed out that currents once injected into the ground would spread in all the directions, quickly becoming too diffuse to be usable over long distances.

8 times when engineer Nikola Tesla was wrong

In addition to engineering and financial problems, the dangers of wireless electrical power to nearby wildlife was not taken into account by Tesla. Thus, the Wardenclyffe Tower project had to be abandoned.

During the same time, Italian engineer Guglielmo Marconi - who unlike Tesla, believed in and worked with electromagnetic waves, succeeded in the wireless transmission of information, rather than electricity.


On science

Although Nikola Tesla was a brilliant engineer and inventor, he sometimes delved into pseudoscientific ideas which had no basis in reality and lacked experimental data – a quality he admired.

For example, Tesla once said: A single ray of light from a distant star falling upon the eye of a tyrant in bygone times may have altered the course of his life, may have changed the destiny of nations.

That thought, although poetically is beautiful, has no scientific weight. Distant stars and planets and their motions have no measurable effects on people. What changes destiny of nations is politics and the king's advisor would have had far greater impact than light of a far away star.

On radioactivity

In 1903, Marie Curie, Pierre Curie and Henri Becquerel won the Nobel Prize in physics for discovering evidence for radioactivity.

However, Tesla was not convinced since he did not believe that the atom was divisible and that it had internal forces and subatomic particles.

According to him, the phenomena of radioactivity was not the result of forces within the radioactive substance but by the rays emitted by the Sun.

He told The New York Times in 1931: If radium could be screened effectively against this ray it would cease to be radioactive.

Summing up

Nikola Tesla was a genius inventor and explorer whose work ushered the electrical revolution that transformed daily life. Einstein wrote to Tesla: As an eminent pioneer in the realm of high frequency currents... I congratulate you on the great successes of your life's work.

8 times when Nikola Tesla was wrong

But at the same time Nikola Tesla was also human – jealousy, denial and frustration, played a big role in his professional life.

His frustration with advanced mathematics led him to incorrectly conclude that Maxwell's equations and relativity were wrong.

His denial of modern science left him too far behind his contemporaries – Marconi, Braun, Bose – in his ability to contribute to the wireless communication.

Surely, Tesla did achieve what others could only dream of. But the point is, not to put Tesla on pedestal, or build conspiracy theories in his favor, as many fans would want to do. It does not do justice to Tesla's brilliance.

Hawking's black hole theorem confirmed by gravitational waves

stephen hawking was right about black holes gravitational waves

A black hole has often been portrayed as the ultimate villain in sci-fi movies due to its mysterious nature. From the death of a large-enough star it emerges with such a strong gravitational field that not even light can escape from within its grasp.

However, in spite of its wildly mysterious behavior, the black hole obeys certain simple rules. One of those rules, first proposed in 1971 by English physicist Stephen Hawking, has been proven correct by the help of gravitational waves.

The area law, derived from Einstein's general relativity, states that it is impossible for a black hole to decrease in size, at least in the short term. Mathematically:

stephen hawking was right about black holes

Recently, a team led by astrophysicist Maximiliano Isi from Massachusetts Institute of Technology studied the gravitational wave data released by the merger of two black holes.

Their calculations show that the total surface area of the resulting black hole is greater than the combined areas of the two smaller black holes. Therefore, Stephen Hawking was right.

However, while black holes cannot shrink according to Einstein's general relativity, they can do so as per the quantum mechanics.

Hawking worked that out too in 1974 – a concept known as Hawking radiation, which is predicted to emit because of strange quantum effects near the black hole's event horizon.

In his 1988 book A Brief History of Time, Hawking thus wrote: Black holes ain't so black. The release of these radiations would cause the black hole to shrink over longer time period and evaporate eventually.

Hence, theoretically speaking, both general relativity and quantum mechanics hold true. Maximiliano Isi said: "I am obsessed with these objects because of how paradoxical they are."

Now that the area law has been established for short to medium time frames, the researchers' next step would be to detect Hawking radiation by observing older black holes; no substantial evidence has been recorded so far.

Isi concludes: Black holes are those phenomena where gravity meets quantum mechanics, which makes them the perfect playgrounds for our understanding of reality.

10 TV Shows That Physics Students Will Enjoy

top ten science fiction shows for science students

While there are several movies and documentaries that appeal mainly to science students, there are not a whole lot of TV shows that a science lover can truly enjoy. Thus, here is a list of tried and tested TV shows that physics students will find interesting.


1. Steins; Gate


If you are into science of time travel, then this show is for you. (Plus, there is a lot of action as well.) In the anime, 11 possible theories of time travel have been touched upon - since one of the protagonists is a theoretical physicist.

The show has also made use of grandfather paradox, multiverse theory and separate timelines. You will be intrigued right from the beginning due to eccentricities of the main character - the show is brilliant in every manner possible.

2. Big Bang Theory


Of course, this is a well known comedy show in which three physicists and an engineer grapple with the complexities of life - especially upon the entry of a girl in their lives.

There will be occasional quizzes, cosplays - such as Sheldon dressing up as Doppler Effect - demonstrations and explanations - like Leonard explaining centripetal force.

Sheldon Cooper Doppler Effect ten science shows for science students

Many renowned celebrities such as Stephen Hawking, Elon Musk, Neil deGrasse Tyson and Steve Wozniak have acted in the show. In fact, Hawking made multiple appearances.

So, overall, it is a fun show for every science student. The first four seasons especially keep the scientific aspect of the show intact. You can watch it on Amazon Prime.

3. Star Trek


In Star Trek, we follow the adventures of a space crew whose mission is to explore strange new worlds in the galaxy - as a mater of fact in the entire universe - to be honest. It is a show loved especially by physicists and astronauts.

So much so that physicist Lawrence M. Krauss wrote a book titled: Physics of star trek based upon the series. In one episode of The Next Generation Newton, Einstein and Hawking are filmed playing poker with Data.

ten science shows for science students poker

Many technological marvels such as matter-antimatter generation, transporter, androids, cloaking devices, etc. have been mentioned and made use of in the show. You can catch it on Amazon Prime.

4. Doctor Who


Time travel is just one of the many themes which are included in Doctor Who. The show has pulse-pounding action that will put you on the edge of your seat, but it also makes you think, such as on the nature of reality, consciousness, etc.

In 2014, physicist Brian Cox hosted a lecture on the science of Doctor Who. Biologist Richard Dawkins made an appearance in one episode. Its eminent writers include Russell T Davies, Steven Moffat and Neil Gaiman.

ten science shows that science students should watch

The show's protagonist frequents between the past and the future. Thus, stories of various historical figures such as William Shakespeare, Ada Lovelace, Rosa Parks, Charles Babbage, Vincent Van Gogh, etc. have been covered in the show.

As far as tomorrow is concerned, writers have shown dystopian future on many occasions and technologically superior space faring human civilization as well.

Apart from science and science fiction the show has also ventured into supernatural, horror and thriller genre. This makes Doctor Who the most versatile science show of all time. You can watch it on Amazon Prime.

5. Young Sheldon


If you're a budding scientist who enjoys family comedies then Young Sheldon on Amazon Prime is for you. As the title suggests the show is based on stories from Sheldon Cooper's childhood. Its themes include science, education, adolescence, family and religion.

6. Dr. Stone


This show is set in post-apocalyptic Earth when humankind has lost most of its technology and resources to Stone. Our genius protagonist is on a mission to redevelop items of everyday use. So it's like watching Bear Grylls in Man VS Wild except that it's Bill Nye in place of Bear Grylls.

7. Black Mirror


It is a dystopian science fiction show in which we delve into the relationship between science, society and technology; that how technology has reduced our freedom, diminished our privacy, etc. If you are accepting of dark humor, satire and dystopia then this is for you.

8. Rick and Morty


This is animated TV show in which we follow the adventures of mad scientist Rick Sanchez and his grandson Morty Smith. The main characters and themes of the show seem to be inspired by Back to the future and Doctor who respectively.

Stories revolve around various scientific topics such as multiverse theory, alien life, mind bending parasites, robots, etc. while also taking into account philosophies such as cosmicism and nihilism.

9. Battlestar Galactica


This action packed show is based upon the bittersweet relationship between humans and artificial intelligence. What does it mean to be human? Its main theme is that, along with a desperate search for home planet - such as Earth - because humans are on the run for their lives after losing war against the great warrior robots, Cylons.

10. The Expanse


Real world science sets this science fiction apart from all the rest. The showrunner Naren Shankar was once an engineer by profession; he also has a PhD. Like all Indians deciding not to be an engineer anymore he then ventured into writing.

The Expanse which you can watch on Amazon Prime is a beautiful combination of space engineering and fiction. It has some of the best physics-based spaceflight and combat and an engaging story as well, according to one viewer.

Role of Richard Feynman's Father In Shaping His Life

richard feynman and his father on father's day

When Richard Feynman was asked in an interview whether anybody could become a physicist like him, he candidly replied: Of course. I was an ordinary person who studied hard. There are no miracle people.

While that may be true, it was Feynman's parents who played the most important roles in giving his life and character shape. While from his father Richard learned to challenge orthodox thinking; from his mother he gained a unique sense of humor.

Richard was born on May 11, 1918 in New York city to Lucille Phillips, a teacher turned homemaker and Melville Feynman, a military uniform salesman who was an immigrant from Minsk, then part of the Russian Empire.

Melville, who never himself had the opportunity to make a career in science, encouraged both his son and daughter Joan (nine years younger than Richard) to take up science. She went on to become a distinguished astrophysicist herself.

Feynman also became famous for his work on quantum electrodynamics which earned him the 1965 Nobel Prize. In an interview thereafter, he revealed: My father taught me very early the difference between knowing and understanding.

Feynman explained: When I was a small boy, my father used to sit me on his lap and read to me from encyclopedia Britannica, say about the dinosaurs.

That this thing was 25 feet tall and its head was 6 feet across and so on. 'But he would stop always', Feynman recalled. 'What does that even mean?'

richard feynman's father story how to learn tips

'Suppose the dinosaur stood in our front yard, then it would be high enough to put its head through the window - but not quite - because the head would be too wide and it would probably break the window apart.'

That is how Melville translated every numerical fact into pictures, into reality and Richard thus started to grow an unbound sense of imagination from an early age, thanks to his father.

Apart from that, Feynman's modesty was also a gift from his father. When questioned, if his work was worthy of a Nobel Prize, he said: I don’t like honors, honors is epaulettes, honors is uniforms. My papa brought me up this way. I can’t stand it, honors bother me.

For him, the true honor was in the observation that other people used his work and derived inspiration from it. Those are the real things, Richard added.

Melville died suddenly on October 8, 1946 around the same time when Arline, Feynman's first wife had passed away. Richard suffered from depression as a result and could not continue doing physics for some time. It was too deep a sorrow.

In the end, what did Feynman gain most from his father? One can say, his childlike curiosity that he maintained throughout his life. But more importantly the bond that they shared was more that of a loving teacher and a student. Feynman learned from his dad how to think, not what to think. His father was his first teacher and friend.

10 Nobel Prize Winning Families In Science

nobel prize winning father son couples in science

The Nobel Prize is the most prestigious award given for intellectual achievement in the world. While there have been several controversial snubs, few have also gone on to win multiple prizes. This, is a list of 10 famous Nobel laureate families of the world.

Curie family


You may already know that Marie Curie and Pierre Curie have jointly won the Nobel Prize in physics. Their daughter, Irène Joliot-Curie received the Prize in chemistry, sharing it with her husband Frédéric Joliot-Curie.

Marie Curie was awarded one more Prize for work done in chemistry thus taking their family total to five Nobel Prizes.

Niels and Aage Bohr


This father and son duo has won the Nobel Prize for physics in 1922 and 1975 respectively. Niels Bohr was awarded for his services in the investigation of atomic structure and Aage Bohr won for describing the structure of atomic nucleus.


Raman and beyond


In 1930, C.V. Raman became India's first Nobel laureate in physics. His nephew Subrahmanyan Chandrasekhar was awarded in 1983 for explaining the evolution of stars. In 2009, another Tamilian Venki Ramakrishnan won the Prize only this time in chemistry.

Thomson family


J.J. Thomson got the 1906 Nobel Prize in physics for his discovery of electron, the first subatomic particle to be found. His son, George Paget Thomson was recognized by the Nobel Committee in 1937 for showing that electron behaved like a wave.

Arthur and Roger Kornberg


Roger was only 12 years old when he saw his father Arthur Kornberg receive the most coveted Prize in 1959. Then, 47 years later, Roger won the Nobel Prize in chemistry for explaining how information is copied from DNA to RNA.

Euler family


Hans von Euler-Chelpin, distantly related to mathematician Leonhard Euler, was a biochemist who won the 1929 Nobel Prize in chemistry. His son Ulf von Euler was a physiologist who won the Prize in medicine for work done on neurotransmitters.

Manne and Kai Siegbahn


This father and son duo was an expert on spectroscopy. Manne Siegbahn won the Nobel Prize in physics for pioneering work done in x-ray spectroscopy. Whereas his son Kai Siegbahn won the same Prize for developing a new method of electron spectroscopy.

Bragg family


William and Lawrence Bragg were jointly awarded the 1915 Nobel Prize for their services in the analysis of crystal structure by means of x-rays. Lawrence is thus far the youngest ever laureate in physics. The father-son duo also have a crystal named after them – Braggite.

May-Britt Moser and Edvard Moser


The Curies are not the only couples that have won the Nobel Prize. In 2014, Edvard Moser and May-Britt Moser received the Prize in medicine for the discovery of grid cells. These are neurons which provide a coordinate system to the brain and thus help an animal navigate in space.

Carl Ferdinand and Gerty Cori


Another Nobel Prize winning couple: Gerti Corie was the third woman to win a Nobel Prize in science. The biochemist duo shared the 1947 Prize in medicine for their discovery of glycogen.

Maxwell, Great Physicist Who Died Too Soon

james clerk maxwell biography, facts

James Clerk Maxwell was a renowned Scottish mathematician who built upon the works of English scientist Michael Faraday and revolutionized physics in whatever little time he spent on Earth.

His most important contribution was the unification of electricity, magnetism and optics into one coherent body of knowledge. Maxwell's research paved the way for technologies like radio, television, mobile phones and infrared telescopes.

Einstein said of Maxwell: The special theory of relativity owes its origins to Maxwell's Equations of the electromagnetic field. Planck added: He achieved greatness unequalled.

Early genius


When Maxwell was 13 years old, he won the Mathematics Medal and the first prize in both English and poetry. Following is one of his short poems:

The world may be utterly crazy
And life may be labour in vain;
But I'd rather be silly than lazy,
And would not quit life for its pain.

He published his first scientific paper at 14. The paper was written on a series of oval curves that could be traced with pins and threads, showing his love for geometry.


Professorship


When he was 24, Maxwell used to set up examination papers for Trinity College. A year later, he became a professor of natural philosophy at Aberdeen University aged 25. Maxwell was at least 15 years younger than his colleagues.

There he studied the nature of Saturn’s rings for almost two years and compiled his observations in a detailed essay, titled: The Stability of Saturn’s Rings.

When Voyager spacecrafts went to space in the 1980s, they confirmed many of the conclusions that Maxwell had made over a century before.


Electromagnetism


Maxwell joined King's College, London in 1860. Here he forayed into works published by Faraday and also met him on several occasions. Michael Faraday, who was 40 years older than Maxwell, became an admirer.

Maxwell examined the behavior of electric and magnetic fields in his 1861 paper: 'On physical lines of force'. In 1862, while giving a lecture, he calculated that the speed of propagation of an electromagnetic field is same as the speed of light.

Thus, he went on to conclude that light is itself an electromagnetic disturbance which propagates through the space according to electromagnetic laws.

Last years


Maxwell resigned in 1865 and returned to his home in Scotland. He also frequented to Cambridge where he was supervising the construction of Cavendish Laboratory.

In 1871, aged 40, he was elected the first Cavendish Professor of Physics. Here he wrote three popular books called Theory of HeatMatter and Motion and A Treatise on Electricity and Magnetism.
His famous twenty equations, which in their modern form are four partial differential equations, known as Maxwell's equations, first appeared in 1873.

In 1879, Maxwell reported difficulty in swallowing food. It was found that he had abdominal cancer, to which he succumbed the same year, at the age of 48.

Legacy


In 1884, five years after Maxwell's death, Heinrich Hertz, a German physicist successfully produced electromagnetic waves in a laboratory as predicted by Maxwell.

Physicists say that Maxwell achieved for light what Newton had achieved for gravity: Unification. It took Maxwell's genius to collect the laws from the scattered pile of experimental evidence then at hand.

American physicist Richard Feynman wrote: Maxwell's equations didn't just change the world. They opened up a new one. Feynman labeled it the 'most significant discovery' of the 19th century.

Today, world's largest single-dish telescope that operates in submillimeter wavelengths of the electromagnetic spectrum is called James Clerk Maxwell Telescope in his honor.

5 LGBTQ scientists who changed the world

5 LGBTQ scientists who changed the world

According to a study, 40% LGBTQ scientists remain closeted at work. While we don't think this post will drastically change the mindset but it will hopefully serve as a conversation starter. Here is a list of LGBTQ scientists who changed the world.

Alan Turing

He was a British mathematician who is well known as the father of theoretical computer science and artificial intelligence.

His pivotal role in the second world war was documented in award winning movie The Imitation Game which starred Benedict Cumberbatch.

Turing was arrested by the police because of his homosexuality in 1952. He chose chemical castration over going to prison to focus on his work. However, he went into depression soon after.

Turing committed suicide in 1954 by eating an apple laced with Cyanide. It is said that the logo of Apple computers is a homage to Turing.

apple 1977 logo tribute to alan turing pride month

In 1999, Time magazine named Alan Turing as one of the 100 most important people of the twentieth century. Later on, an official apology by the British government was also made.

Isaac Newton

In 2005, schools across UK included lessons on modern as well as historical gay icons such as Freddie Mercury and Isaac Newton respectively.

was isaac newton gay pride month

While many biographers, including Richard Westfall in his 1000 page account of Newton, argue that Newton was homosexually inclined (focusing particularly on his close relationship with the Swiss mathematician Nicolas Fatio de Duillier) others are not so keen.

Still, people find it rather odd that a figure as popular as Newton may have died a virgin.

When asked to answer on Newton's personal life, a Quora user jokingly commented: Newton was closeted of course, as men of his time had to be. But he gave a big hint by shining a rainbow for all to see.

Leonardo Da Vinci

Renaissance society did not have the idea of firm sexual orientation that prevails today and many men were in practice bisexual.

According to Walter Isaacson's biography, Leonardo Da Vinci lived life as an openly gay man and while that is the generally accepted position, some say that the artist and inventor was celibate.

The only written evidence, so far as his personal life is concerned, is a 1476 document in which Leonardo was charged with sodomy involving a well-known male prostitute.

Since that date, much has been speculated and written about his presumed homosexuality and especially its role in his art.

Francis Bacon

He is known as father of modern science thanks to his invention of an empirical method of doing science which is called the scientific method. Historical notes, such as letters exchanged between Bacon's mother and brother, have shown that he was primarily attracted to men.

Sally Ride

She was an American astronaut and physicist who became the first American woman to go to space. Ride was only 32 years old at the time of this achievement and remains the youngest American to have been to space.

She was in a private relationship with former Tennis player and science writer Tam O'Shaughnessy. They were together for 27 years until Ride's death due to pancreatic cancer.

Which Books Richard Feynman Studied From?

feynman richard books

We all know Richard Feynman as a Nobel Prize winner and a beloved teacher whose lectures on physics are enjoyed by millions of people. It would be interesting to know how Feynman became so imaginative and curious about the world. How did Feynman learn physics and mathematics? Let's find out in this post.

When asked in an interview, if anybody could become a physicist like him, Feynman candidly replied: "Of course. I was an ordinary person who studied hard. There are no miracle people. It just happens. They got interested in this thing and they learned all this stuff."

The young Richard Feynman was largely influenced by his father, Melville Feynman, who encouraged his son to ask questions and challenge orthodox thinking. Melville was a sales manager but he always wanted to become a scientist himself.

Feynman recalled: "The most important thing I found out from my father is that if you asked any question and pursued it deeply enough, then at the end there was a glorious discovery of a general and beautiful kind."

Feynman also learned from his father the difference between knowing and understanding. For instance, you can know the name of a bird in all the languages of the world, but when you're finished, you'll know absolutely nothing whatever about the bird.

Feynman goes on to comment: "I don't know what is the matter with people: they don't learn by understanding; they learn by some other way – by rote or something. Their knowledge is so fragile."

When Feynman found a subject which interested him, he was not the kind to wait for the right teacher to come along; Feynman was determined to master the topic by himself. This is how he practiced early on the art of teaching.

For example, Feynman self-studied calculus at the age of 14 by reading Calculus for the practical man. This and other books written by James Edgar Thompson, such as Algebra for the practical man intrigued him.

Richard Feynman's notes calculus
Table of contents. Picture credit: Melinda Baldwin

Feynman's notes were quite extensive, less wordy and more visual in nature. This habit of taking notes helped in revision. Feynman would use drawings to simplify a difficult concept, which helped him win a Nobel prize later on.


While Julian Schwinger's formulation of quantum electrodynamics was mathematically superior and far more complex to work with; Feynman's drawing approach, on the other hand, broke the whole thing down into simpler diagrams.

Feynman studied really very hard in his Caltech years too. Before giving a lecture, he would prepare late into the night. Feynman's strategy was: To study in the most undisciplined, irreverent, and original manner possible.

In other words, Feynman's ability to consume knowledge was phenomenal. He would teach it to himself and in the process discover tricks and tips to succeed in maths and physics. Thus, in short, his two secrets to success in academics: Self-learning and teaching.

Feynman was a life-long learner and no matter how long it would take him to learn on his own, he would never give up or lose hope and stayed focused till the problem at hand was resolved.
© 2019-2022
made with by vedang